Question Comment déterminer la consommation de CPU et de mémoire à l'intérieur d'un processus?


Une fois, j'ai eu la tâche de déterminer les paramètres de performance suivants à partir d'une application en cours d'exécution:

  • Mémoire virtuelle totale disponible
  • Mémoire virtuelle actuellement utilisée
  • Mémoire virtuelle actuellement utilisée par mon processus
  • Total RAM disponible
  • RAM actuellement utilisé
  • RAM actuellement utilisée par mon processus
  • % CPU actuellement utilisé
  • % CPU actuellement utilisé par mon processus

Le code devait fonctionner sous Windows et Linux. Même si cela semble être une tâche standard, trouver les informations nécessaires dans les manuels (API WIN32, documents GNU) et sur Internet m'a pris plusieurs jours, car il y a tellement d'informations incomplètes / incorrectes / obsolètes sur ce sujet. trouvé là-bas.

Afin de sauver d'autres personnes du même problème, j'ai pensé que ce serait une bonne idée de rassembler toutes les informations éparpillées et ce que j'ai trouvé par essais et erreurs ici à un endroit.


470
2017-09-15 14:04


origine


Réponses:


les fenêtres

Certaines des valeurs ci-dessus sont facilement disponibles à partir de l'API WIN32 appropriée, je les liste juste ici pour l'exhaustivité. D'autres, cependant, doivent être obtenus à partir de la bibliothèque PDH (Performance Data Helper), qui est un peu "non intuitive" et nécessite beaucoup d'essais et d'erreurs pénibles pour se mettre au travail. (Au moins, cela m'a pris du temps, peut-être que je n'ai été qu'un peu stupide ...)

Remarque: pour plus de clarté, toute vérification d'erreur a été omise du code suivant. Vérifiez les codes de retour ...!


  • Mémoire virtuelle totale:

    #include "windows.h"
    
    MEMORYSTATUSEX memInfo;
    memInfo.dwLength = sizeof(MEMORYSTATUSEX);
    GlobalMemoryStatusEx(&memInfo);
    DWORDLONG totalVirtualMem = memInfo.ullTotalPageFile;
    

    Note: Le nom "TotalPageFile" est un peu trompeur ici. En réalité, ce paramètre donne la "taille de la mémoire virtuelle", c'est-à-dire la taille du fichier d'échange et de la mémoire vive installée.

  • Mémoire virtuelle actuellement utilisée:

    Même code que dans "Mémoire virtuelle totale", puis

    DWORDLONG virtualMemUsed = memInfo.ullTotalPageFile - memInfo.ullAvailPageFile;
    
  • Mémoire virtuelle actuellement utilisée par le processus actuel:

    #include "windows.h"
    #include "psapi.h"
    
    PROCESS_MEMORY_COUNTERS_EX pmc;
    GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc));
    SIZE_T virtualMemUsedByMe = pmc.PrivateUsage;
    



  • Mémoire physique totale (RAM):

    Même code que dans "Mémoire virtuelle totale", puis

    DWORDLONG totalPhysMem = memInfo.ullTotalPhys;
    
  • Mémoire physique actuellement utilisée:

    Same code as in "Total Virtual Memory" and then
    
    DWORDLONG physMemUsed = memInfo.ullTotalPhys - memInfo.ullAvailPhys;
    
  • Mémoire physique actuellement utilisée par le processus en cours:

    Même code que dans "Mémoire virtuelle actuellement utilisée par le processus en cours", puis

    SIZE_T physMemUsedByMe = pmc.WorkingSetSize;
    



  • CPU actuellement utilisée:

    #include "TCHAR.h"
    #include "pdh.h"
    
    static PDH_HQUERY cpuQuery;
    static PDH_HCOUNTER cpuTotal;
    
    void init(){
        PdhOpenQuery(NULL, NULL, &cpuQuery);
        // You can also use L"\\Processor(*)\\% Processor Time" and get individual CPU values with PdhGetFormattedCounterArray()
        PdhAddEnglishCounter(cpuQuery, L"\\Processor(_Total)\\% Processor Time", NULL, &cpuTotal);
        PdhCollectQueryData(cpuQuery);
    }
    
    double getCurrentValue(){
        PDH_FMT_COUNTERVALUE counterVal;
    
        PdhCollectQueryData(cpuQuery);
        PdhGetFormattedCounterValue(cpuTotal, PDH_FMT_DOUBLE, NULL, &counterVal);
        return counterVal.doubleValue;
    }
    
  • Processeur actuellement utilisé par le processus en cours:

    #include "windows.h"
    
    static ULARGE_INTEGER lastCPU, lastSysCPU, lastUserCPU;
    static int numProcessors;
    static HANDLE self;
    
    void init(){
        SYSTEM_INFO sysInfo;
        FILETIME ftime, fsys, fuser;
    
        GetSystemInfo(&sysInfo);
        numProcessors = sysInfo.dwNumberOfProcessors;
    
        GetSystemTimeAsFileTime(&ftime);
        memcpy(&lastCPU, &ftime, sizeof(FILETIME));
    
        self = GetCurrentProcess();
        GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
        memcpy(&lastSysCPU, &fsys, sizeof(FILETIME));
        memcpy(&lastUserCPU, &fuser, sizeof(FILETIME));
    }
    
    double getCurrentValue(){
        FILETIME ftime, fsys, fuser;
        ULARGE_INTEGER now, sys, user;
        double percent;
    
        GetSystemTimeAsFileTime(&ftime);
        memcpy(&now, &ftime, sizeof(FILETIME));
    
        GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
        memcpy(&sys, &fsys, sizeof(FILETIME));
        memcpy(&user, &fuser, sizeof(FILETIME));
        percent = (sys.QuadPart - lastSysCPU.QuadPart) +
            (user.QuadPart - lastUserCPU.QuadPart);
        percent /= (now.QuadPart - lastCPU.QuadPart);
        percent /= numProcessors;
        lastCPU = now;
        lastUserCPU = user;
        lastSysCPU = sys;
    
        return percent * 100;
    }
    

Linux

Sous Linux, le choix qui semblait évident au début était d'utiliser les API POSIX comme getrusage (), etc. J'ai essayé de faire fonctionner ceci, mais je n'ai jamais obtenu de valeurs significatives. Quand j'ai finalement vérifié les sources du noyau elles-mêmes, j'ai découvert que, apparemment, ces API ne sont pas encore complètement implémentées depuis le noyau Linux 2.6!

À la fin, j'ai obtenu toutes les valeurs en combinant la lecture des pseudo-systèmes de fichiers / proc et les appels au noyau.

  • Mémoire virtuelle totale:

    #include "sys/types.h"
    #include "sys/sysinfo.h"
    
    struct sysinfo memInfo;
    
    sysinfo (&memInfo);
    long long totalVirtualMem = memInfo.totalram;
    //Add other values in next statement to avoid int overflow on right hand side...
    totalVirtualMem += memInfo.totalswap;
    totalVirtualMem *= memInfo.mem_unit;
    
  • Mémoire virtuelle actuellement utilisée:

    Même code que dans "Mémoire virtuelle totale", puis

    long long virtualMemUsed = memInfo.totalram - memInfo.freeram;
    //Add other values in next statement to avoid int overflow on right hand side...
    virtualMemUsed += memInfo.totalswap - memInfo.freeswap;
    virtualMemUsed *= memInfo.mem_unit;
    
  • Mémoire virtuelle actuellement utilisée par le processus actuel:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    
    int parseLine(char* line){
        // This assumes that a digit will be found and the line ends in " Kb".
        int i = strlen(line);
        const char* p = line;
        while (*p <'0' || *p > '9') p++;
        line[i-3] = '\0';
        i = atoi(p);
        return i;
    }
    
    int getValue(){ //Note: this value is in KB!
        FILE* file = fopen("/proc/self/status", "r");
        int result = -1;
        char line[128];
    
        while (fgets(line, 128, file) != NULL){
            if (strncmp(line, "VmSize:", 7) == 0){
                result = parseLine(line);
                break;
            }
        }
        fclose(file);
        return result;
    }
    



  • Mémoire physique totale (RAM):

    Même code que dans "Mémoire virtuelle totale", puis

    long long totalPhysMem = memInfo.totalram;
    //Multiply in next statement to avoid int overflow on right hand side...
    totalPhysMem *= memInfo.mem_unit;
    
  • Mémoire physique actuellement utilisée:

    Même code que dans "Mémoire virtuelle totale", puis

    long long physMemUsed = memInfo.totalram - memInfo.freeram;
    //Multiply in next statement to avoid int overflow on right hand side...
    physMemUsed *= memInfo.mem_unit;
    
  • Mémoire physique actuellement utilisée par le processus en cours:

    Changez getValue () dans "Mémoire virtuelle actuellement utilisée par le processus en cours" comme suit:

    int getValue(){ //Note: this value is in KB!
        FILE* file = fopen("/proc/self/status", "r");
        int result = -1;
        char line[128];
    
        while (fgets(line, 128, file) != NULL){
            if (strncmp(line, "VmRSS:", 6) == 0){
                result = parseLine(line);
                break;
            }
        }
        fclose(file);
        return result;
    }
    



  • CPU actuellement utilisée:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    
    static unsigned long long lastTotalUser, lastTotalUserLow, lastTotalSys, lastTotalIdle;
    
    void init(){
        FILE* file = fopen("/proc/stat", "r");
        fscanf(file, "cpu %llu %llu %llu %llu", &lastTotalUser, &lastTotalUserLow,
            &lastTotalSys, &lastTotalIdle);
        fclose(file);
    }
    
    double getCurrentValue(){
        double percent;
        FILE* file;
        unsigned long long totalUser, totalUserLow, totalSys, totalIdle, total;
    
        file = fopen("/proc/stat", "r");
        fscanf(file, "cpu %llu %llu %llu %llu", &totalUser, &totalUserLow,
            &totalSys, &totalIdle);
        fclose(file);
    
        if (totalUser < lastTotalUser || totalUserLow < lastTotalUserLow ||
            totalSys < lastTotalSys || totalIdle < lastTotalIdle){
            //Overflow detection. Just skip this value.
            percent = -1.0;
        }
        else{
            total = (totalUser - lastTotalUser) + (totalUserLow - lastTotalUserLow) +
                (totalSys - lastTotalSys);
            percent = total;
            total += (totalIdle - lastTotalIdle);
            percent /= total;
            percent *= 100;
        }
    
        lastTotalUser = totalUser;
        lastTotalUserLow = totalUserLow;
        lastTotalSys = totalSys;
        lastTotalIdle = totalIdle;
    
        return percent;
    }
    
  • Processeur actuellement utilisé par le processus en cours:

    #include "stdlib.h"
    #include "stdio.h"
    #include "string.h"
    #include "sys/times.h"
    #include "sys/vtimes.h"
    
    static clock_t lastCPU, lastSysCPU, lastUserCPU;
    static int numProcessors;
    
    void init(){
        FILE* file;
        struct tms timeSample;
        char line[128];
    
        lastCPU = times(&timeSample);
        lastSysCPU = timeSample.tms_stime;
        lastUserCPU = timeSample.tms_utime;
    
        file = fopen("/proc/cpuinfo", "r");
        numProcessors = 0;
        while(fgets(line, 128, file) != NULL){
            if (strncmp(line, "processor", 9) == 0) numProcessors++;
        }
        fclose(file);
    }
    
    double getCurrentValue(){
        struct tms timeSample;
        clock_t now;
        double percent;
    
        now = times(&timeSample);
        if (now <= lastCPU || timeSample.tms_stime < lastSysCPU ||
            timeSample.tms_utime < lastUserCPU){
            //Overflow detection. Just skip this value.
            percent = -1.0;
        }
        else{
            percent = (timeSample.tms_stime - lastSysCPU) +
                (timeSample.tms_utime - lastUserCPU);
            percent /= (now - lastCPU);
            percent /= numProcessors;
            percent *= 100;
        }
        lastCPU = now;
        lastSysCPU = timeSample.tms_stime;
        lastUserCPU = timeSample.tms_utime;
    
        return percent;
    }
    

TODO: Autres plates-formes

Je suppose que certains des codes Linux fonctionnent aussi pour les Unix, à l'exception des parties qui lisent le pseudo-système de fichiers / proc. Peut-être sur Unix ces parties peuvent être remplacées par getrusage () et des fonctions similaires? Si quelqu'un avec un savoir-faire Unix pouvait éditer cette réponse et remplir les détails ?!


522
2017-09-15 15:55



Mac OS X

J'espérais trouver des informations similaires pour Mac OS X également. Comme ce n'était pas là, je suis sorti et je me suis creusé moi-même. Voici certaines des choses que j'ai trouvées. Si quelqu'un a d'autres suggestions, j'adorerais les entendre.

Mémoire virtuelle totale

Celui-ci est difficile sur Mac OS X car il n'utilise pas de partition d'échange prédéfinie ou de fichier comme Linux. Voici une entrée de la documentation d'Apple:

Remarque: Contrairement à la plupart des systèmes d'exploitation basés sur Unix, Mac OS X n'utilise pas de partition de swap préallouée pour la mémoire virtuelle. Au lieu de cela, il utilise tout l'espace disponible sur la partition de démarrage de la machine.

Donc, si vous voulez savoir combien de mémoire virtuelle est encore disponible, vous devez obtenir la taille de la partition racine. Vous pouvez le faire comme ceci:

struct statfs stats;
if (0 == statfs("/", &stats))
{
    myFreeSwap = (uint64_t)stats.f_bsize * stats.f_bfree;
}

Total virtuel actuellement utilisé

L'appel systcl avec la clé "vm.swapusage" fournit des informations intéressantes sur l'utilisation du swap:

sysctl -n vm.swapusage
vm.swapusage: total = 3072.00M  used = 2511.78M  free = 560.22M  (encrypted)

Ce n'est pas que l'utilisation totale du swap affichée ici peut changer si plus de swap est nécessaire, comme expliqué dans la section ci-dessus. Donc, le total est en fait le actuel swap total. En C ++, ces données peuvent être interrogées de cette manière:

xsw_usage vmusage = {0};
size_t size = sizeof(vmusage);
if( sysctlbyname("vm.swapusage", &vmusage, &size, NULL, 0)!=0 )
{
   perror( "unable to get swap usage by calling sysctlbyname(\"vm.swapusage\",...)" );
}

Notez que le "xsw_usage", déclaré dans sysctl.h, ne semble pas documenté et je soupçonne qu'il existe un moyen plus portable d'accéder à ces valeurs.

Mémoire virtuelle actuellement utilisée par mon processus

Vous pouvez obtenir des statistiques sur votre processus actuel en utilisant le task_info fonction. Cela inclut la taille actuelle du résident de votre processus et la taille virtuelle actuelle.

#include<mach/mach.h>

struct task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;

if (KERN_SUCCESS != task_info(mach_task_self(),
                              TASK_BASIC_INFO, (task_info_t)&t_info, 
                              &t_info_count))
{
    return -1;
}
// resident size is in t_info.resident_size;
// virtual size is in t_info.virtual_size;

Total RAM disponible

La quantité de RAM physique disponible dans votre système est disponible à l'aide du sysctl fonction du système comme ceci:

#include <sys/types.h>
#include <sys/sysctl.h>
...
int mib[2];
int64_t physical_memory;
mib[0] = CTL_HW;
mib[1] = HW_MEMSIZE;
length = sizeof(int64_t);
sysctl(mib, 2, &physical_memory, &length, NULL, 0);

RAM actuellement utilisé

Vous pouvez obtenir des statistiques générales de la mémoire à partir du host_statistics fonction du système.

#include <mach/vm_statistics.h>
#include <mach/mach_types.h>
#include <mach/mach_init.h>
#include <mach/mach_host.h>

int main(int argc, const char * argv[]) {
    vm_size_t page_size;
    mach_port_t mach_port;
    mach_msg_type_number_t count;
    vm_statistics64_data_t vm_stats;

    mach_port = mach_host_self();
    count = sizeof(vm_stats) / sizeof(natural_t);
    if (KERN_SUCCESS == host_page_size(mach_port, &page_size) &&
        KERN_SUCCESS == host_statistics64(mach_port, HOST_VM_INFO,
                                        (host_info64_t)&vm_stats, &count))
    {
        long long free_memory = (int64_t)vm_stats.free_count * (int64_t)page_size;

        long long used_memory = ((int64_t)vm_stats.active_count +
                                 (int64_t)vm_stats.inactive_count +
                                 (int64_t)vm_stats.wire_count) *  (int64_t)page_size;
        printf("free memory: %lld\nused memory: %lld\n", free_memory, used_memory);
    }

    return 0;
}

Une chose à noter ici est qu'il existe cinq types de pages de mémoire dans Mac OS X. Ils sont les suivants:

  1. Câblé des pages qui sont verrouillées en place et ne peuvent pas être échangées
  2. actif les pages qui se chargent dans la mémoire physique et seraient relativement difficiles à échanger
  3. Inactif pages qui sont chargées en mémoire, mais qui n'ont pas été utilisées récemment et peuvent même ne pas être nécessaires du tout. Ce sont des candidats potentiels pour l'échange. Cette mémoire devrait probablement être vidée.
  4. En cache des pages qui ont été mises en cache de manière à être facilement réutilisables. La mémoire mise en cache ne nécessiterait probablement pas de rinçage. Il est toujours possible de réactiver les pages en cache
  5. Gratuit des pages entièrement gratuites et prêtes à être utilisées.

Il est bon de noter que le simple fait que Mac OS X affiche parfois très peu de mémoire libre réelle peut ne pas être une bonne indication de la quantité de données à utiliser rapidement.

RAM actuellement utilisé par mon processus

Voir la "Mémoire virtuelle actuellement utilisée par mon processus" ci-dessus. Le même code s'applique.


124
2017-12-16 02:21



Linux

Sous Linux, ces informations sont disponibles dans le système de fichiers / proc. Je ne suis pas un grand fan du format de fichier texte utilisé, car chaque distribution Linux semble personnaliser au moins un fichier important. Un coup d'œil rapide comme source de "ps" révèle le gâchis.

Mais voici où trouver l'information que vous cherchez:

/ proc / meminfo contient la majorité des informations à l'échelle du système que vous recherchez. Ici, ça ressemble à mon système; Je pense que vous êtes intéressé par MemTotal, MemFree, SwapTotal, et SwapFree:

Anderson cxc # more /proc/meminfo
MemTotal:      4083948 kB
MemFree:       2198520 kB
Buffers:         82080 kB
Cached:        1141460 kB
SwapCached:          0 kB
Active:        1137960 kB
Inactive:       608588 kB
HighTotal:     3276672 kB
HighFree:      1607744 kB
LowTotal:       807276 kB
LowFree:        590776 kB
SwapTotal:     2096440 kB
SwapFree:      2096440 kB
Dirty:              32 kB
Writeback:           0 kB
AnonPages:      523252 kB
Mapped:          93560 kB
Slab:            52880 kB
SReclaimable:    24652 kB
SUnreclaim:      28228 kB
PageTables:       2284 kB
NFS_Unstable:        0 kB
Bounce:              0 kB
CommitLimit:   4138412 kB
Committed_AS:  1845072 kB
VmallocTotal:   118776 kB
VmallocUsed:      3964 kB
VmallocChunk:   112860 kB
HugePages_Total:     0
HugePages_Free:      0
HugePages_Rsvd:      0
Hugepagesize:     2048 kB

Pour l'utilisation du processeur, vous devez faire un peu de travail. Linux rend disponible l'utilisation globale du processeur depuis le démarrage du système; Ce n'est probablement pas ce qui vous intéresse. Si vous voulez savoir quelle était l'utilisation du processeur pendant la dernière seconde, ou 10 secondes, vous devez alors interroger les informations et les calculer vous-même.

L'information est disponible dans / proc / stat, qui est assez bien documenté à http://www.linuxhowtos.org/System/procstat.htm; voici à quoi ça ressemble sur ma boîte à 4 coeurs:

Anderson cxc #  more /proc/stat
cpu  2329889 0 2364567 1063530460 9034 9463 96111 0
cpu0 572526 0 636532 265864398 2928 1621 6899 0
cpu1 590441 0 531079 265949732 4763 351 8522 0
cpu2 562983 0 645163 265796890 682 7490 71650 0
cpu3 603938 0 551790 265919440 660 0 9040 0
intr 37124247
ctxt 50795173133
btime 1218807985
processes 116889
procs_running 1
procs_blocked 0

Tout d'abord, vous devez déterminer le nombre de processeurs (ou de processeurs ou de cœurs de traitement) disponibles dans le système. Pour ce faire, comptez le nombre d'entrées 'cpuN', où N commence à 0 et s'incrémente. Ne comptez pas la ligne 'cpu', qui est une combinaison des lignes cpuN. Dans mon exemple, vous pouvez voir cpu0 à cpu3, ​​pour un total de 4 processeurs. A partir de maintenant, vous pouvez ignorer cpu0..cpu3 et vous concentrer uniquement sur la ligne 'cpu'.

Ensuite, vous devez savoir que le quatrième nombre dans ces lignes est une mesure du temps d'inactivité, et donc le quatrième chiffre sur la ligne 'cpu' est le temps d'inactivité total pour tous les processeurs depuis le démarrage. Ce temps est mesuré sous Linux "jiffies", qui sont 1/100 de seconde chacun.

Mais vous ne vous souciez pas du temps d'inactivité total; vous vous souciez du temps d'inactivité dans une période donnée, par exemple, la dernière seconde. Calculez cela, vous devez lire ce fichier deux fois, à une seconde d'intervalle. Ensuite, vous pouvez faire un diff de la quatrième valeur de la ligne. Par exemple, si vous prenez un échantillon et obtenez:

cpu  2330047 0 2365006 1063853632 9035 9463 96114 0

Puis une seconde plus tard, vous obtenez cet échantillon:

cpu  2330047 0 2365007 1063854028 9035 9463 96114 0

Soustrayez les deux nombres, et vous obtenez un diff de 396, ce qui signifie que votre processeur a été inactif pendant 3,96 secondes sur les 1,00 dernière seconde. L'astuce, bien sûr, est que vous devez diviser par le nombre de processeurs. 3,96 / 4 = 0,99, et il y a votre pourcentage inactif; 99% inactif et 1% occupé.

Dans mon code, j'ai un tampon circulaire de 360 ​​entrées, et je lis ce fichier toutes les secondes. Cela me permet de calculer rapidement l’utilisation du processeur pendant 1 seconde, 10 secondes, etc., jusqu’à 1 heure.

Pour les informations spécifiques au processus, vous devez regarder dans / proc / pid; Si vous ne vous souciez pas de votre PID, vous pouvez regarder dans / proc / self.

Le processeur utilisé par votre processus est disponible dans / proc / self / stat. Ceci est un fichier étrange composé d'une seule ligne; par exemple:

19340 (whatever) S 19115 19115 3084 34816 19115 4202752 118200 607 0 0 770 384 2
 7 20 0 77 0 266764385 692477952 105074 4294967295 134512640 146462952 321468364
8 3214683328 4294960144 0 2147221247 268439552 1276 4294967295 0 0 17 0 0 0 0

Les données importantes ici sont les 13ème et 14ème jetons (0 et 770 ici). Le 13ème jeton est le nombre de jiffies que le processus a exécuté en mode utilisateur, et le 14ème est le nombre de jiffies que le processus a exécuté en mode noyau. Ajoutez les deux ensemble, et vous avez sa consommation totale de CPU.

Encore une fois, vous devrez échantillonner périodiquement ce fichier et calculer le diff, afin de déterminer l'utilisation du processeur dans le temps.

Modifier:  N'oubliez pas que lorsque vous calculez l'utilisation du processeur de votre processus, vous devez prendre en compte 1) le nombre de threads dans votre processus et 2) le nombre de processeurs dans le système. Par exemple, si votre processus monothread n'utilise que 25% du processeur, cela peut être bon ou mauvais. Bon sur un système à processeur unique, mais mauvais sur un système à 4 processeurs; Cela signifie que votre processus fonctionne constamment et que 100% des cycles du processeur sont disponibles.

Pour les informations de mémoire spécifiques au processus, vous devez regarder / proc / self / status, qui ressemble à ceci:

Name:   whatever
State:  S (sleeping)
Tgid:   19340
Pid:    19340
PPid:   19115
TracerPid:      0
Uid:    0       0       0       0
Gid:    0       0       0       0
FDSize: 256
Groups: 0 1 2 3 4 6 10 11 20 26 27
VmPeak:   676252 kB
VmSize:   651352 kB
VmLck:         0 kB
VmHWM:    420300 kB
VmRSS:    420296 kB
VmData:   581028 kB
VmStk:       112 kB
VmExe:     11672 kB
VmLib:     76608 kB
VmPTE:      1244 kB
Threads:        77
SigQ:   0/36864
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: fffffffe7ffbfeff
SigIgn: 0000000010001000
SigCgt: 20000001800004fc
CapInh: 0000000000000000
CapPrm: 00000000ffffffff
CapEff: 00000000fffffeff
Cpus_allowed:   0f
Mems_allowed:   1
voluntary_ctxt_switches:        6518
nonvoluntary_ctxt_switches:     6598

Les entrées commençant par 'Vm' sont les plus intéressantes:

  • VmPeak est l'espace de mémoire virtuelle maximum utilisé par le processus, en kB (1024 octets).
  • VmSize est l'espace de mémoire virtuelle actuel utilisé par le processus, en kB. Dans mon exemple, c'est assez gros: 651 352 Ko, soit environ 636 Mo.
  • VmRss est la quantité de mémoire qui a été mappée dans l'espace d'adressage du processus ou dans la taille de l'ensemble résident. Ceci est sensiblement plus petit (420 296 kB, soit environ 410 mégaoctets). La différence: mon programme a mappé 636 Mo via mmap (), mais n’a accédé qu’à 410 Mo, et donc seulement 410 Mo de pages lui ont été attribuées.

Le seul élément dont je ne suis pas sûr est Swapspace actuellement utilisé par mon processus. Je ne sais pas si c'est disponible.


50
2017-09-15 16:27



dans Windows, vous pouvez obtenir l'utilisation du processeur par code ci-dessous:

#include <windows.h>
#include <stdio.h>

    //------------------------------------------------------------------------------------------------------------------
    // Prototype(s)...
    //------------------------------------------------------------------------------------------------------------------
    CHAR cpuusage(void);

    //-----------------------------------------------------
    typedef BOOL ( __stdcall * pfnGetSystemTimes)( LPFILETIME lpIdleTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime );
    static pfnGetSystemTimes s_pfnGetSystemTimes = NULL;

    static HMODULE s_hKernel = NULL;
    //-----------------------------------------------------
    void GetSystemTimesAddress()
    {
        if( s_hKernel == NULL )
        {   
            s_hKernel = LoadLibrary( L"Kernel32.dll" );
            if( s_hKernel != NULL )
            {
                s_pfnGetSystemTimes = (pfnGetSystemTimes)GetProcAddress( s_hKernel, "GetSystemTimes" );
                if( s_pfnGetSystemTimes == NULL )
                {
                    FreeLibrary( s_hKernel ); s_hKernel = NULL;
                }
            }
        }
    }
    //----------------------------------------------------------------------------------------------------------------

    //----------------------------------------------------------------------------------------------------------------
    // cpuusage(void)
    // ==============
    // Return a CHAR value in the range 0 - 100 representing actual CPU usage in percent.
    //----------------------------------------------------------------------------------------------------------------
    CHAR cpuusage()
    {
        FILETIME               ft_sys_idle;
        FILETIME               ft_sys_kernel;
        FILETIME               ft_sys_user;

        ULARGE_INTEGER         ul_sys_idle;
        ULARGE_INTEGER         ul_sys_kernel;
        ULARGE_INTEGER         ul_sys_user;

        static ULARGE_INTEGER    ul_sys_idle_old;
        static ULARGE_INTEGER  ul_sys_kernel_old;
        static ULARGE_INTEGER  ul_sys_user_old;

        CHAR  usage = 0;

        // we cannot directly use GetSystemTimes on C language
        /* add this line :: pfnGetSystemTimes */
        s_pfnGetSystemTimes(&ft_sys_idle,    /* System idle time */
            &ft_sys_kernel,  /* system kernel time */
            &ft_sys_user);   /* System user time */

        CopyMemory(&ul_sys_idle  , &ft_sys_idle  , sizeof(FILETIME)); // Could been optimized away...
        CopyMemory(&ul_sys_kernel, &ft_sys_kernel, sizeof(FILETIME)); // Could been optimized away...
        CopyMemory(&ul_sys_user  , &ft_sys_user  , sizeof(FILETIME)); // Could been optimized away...

        usage  =
            (
            (
            (
            (
            (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+
            (ul_sys_user.QuadPart   - ul_sys_user_old.QuadPart)
            )
            -
            (ul_sys_idle.QuadPart-ul_sys_idle_old.QuadPart)
            )
            *
            (100)
            )
            /
            (
            (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+
            (ul_sys_user.QuadPart   - ul_sys_user_old.QuadPart)
            )
            );

        ul_sys_idle_old.QuadPart   = ul_sys_idle.QuadPart;
        ul_sys_user_old.QuadPart   = ul_sys_user.QuadPart;
        ul_sys_kernel_old.QuadPart = ul_sys_kernel.QuadPart;

        return usage;
    }
    //------------------------------------------------------------------------------------------------------------------
    // Entry point
    //------------------------------------------------------------------------------------------------------------------
    int main(void)
    {
        int n;
        GetSystemTimesAddress();
        for(n=0;n<20;n++)
        {
            printf("CPU Usage: %3d%%\r",cpuusage());
            Sleep(2000);
        }
        printf("\n");
        return 0;
    }

10
2017-12-19 07:11



Linux

Un moyen portable de lire la mémoire et de charger les numéros est le sysinfo appel

Usage

   #include <sys/sysinfo.h>

   int sysinfo(struct sysinfo *info);

LA DESCRIPTION

   Until Linux 2.3.16, sysinfo() used to return information in the
   following structure:

       struct sysinfo {
           long uptime;             /* Seconds since boot */
           unsigned long loads[3];  /* 1, 5, and 15 minute load averages */
           unsigned long totalram;  /* Total usable main memory size */
           unsigned long freeram;   /* Available memory size */
           unsigned long sharedram; /* Amount of shared memory */
           unsigned long bufferram; /* Memory used by buffers */
           unsigned long totalswap; /* Total swap space size */
           unsigned long freeswap;  /* swap space still available */
           unsigned short procs;    /* Number of current processes */
           char _f[22];             /* Pads structure to 64 bytes */
       };

   and the sizes were given in bytes.

   Since Linux 2.3.23 (i386), 2.3.48 (all architectures) the structure
   is:

       struct sysinfo {
           long uptime;             /* Seconds since boot */
           unsigned long loads[3];  /* 1, 5, and 15 minute load averages */
           unsigned long totalram;  /* Total usable main memory size */
           unsigned long freeram;   /* Available memory size */
           unsigned long sharedram; /* Amount of shared memory */
           unsigned long bufferram; /* Memory used by buffers */
           unsigned long totalswap; /* Total swap space size */
           unsigned long freeswap;  /* swap space still available */
           unsigned short procs;    /* Number of current processes */
           unsigned long totalhigh; /* Total high memory size */
           unsigned long freehigh;  /* Available high memory size */
           unsigned int mem_unit;   /* Memory unit size in bytes */
           char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding to 64 bytes */
       };

   and the sizes are given as multiples of mem_unit bytes.

8
2017-07-16 21:14



QNX

Puisqu'il s'agit d'une "wikipage de code", je souhaite ajouter du code à partir de la base de connaissances QNX (note: ce n'est pas mon travail, mais je l'ai vérifié et cela fonctionne correctement sur mon système):

Comment obtenir l'utilisation du processeur en%: http://www.qnx.com/support/knowledgebase.html?id=50130000000P9b5

#include <atomic.h>
#include <libc.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/iofunc.h>
#include <sys/neutrino.h>
#include <sys/resmgr.h>
#include <sys/syspage.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/debug.h>
#include <sys/procfs.h>
#include <sys/syspage.h>
#include <sys/neutrino.h>
#include <sys/time.h>
#include <time.h>
#include <fcntl.h>
#include <devctl.h>
#include <errno.h>

#define MAX_CPUS 32

static float Loads[MAX_CPUS];
static _uint64 LastSutime[MAX_CPUS];
static _uint64 LastNsec[MAX_CPUS];
static int ProcFd = -1;
static int NumCpus = 0;


int find_ncpus(void) {
    return NumCpus;
}

int get_cpu(int cpu) {
    int ret;
    ret = (int)Loads[ cpu % MAX_CPUS ];
    ret = max(0,ret);
    ret = min(100,ret);
    return( ret );
}

static _uint64 nanoseconds( void ) {
    _uint64 sec, usec;
    struct timeval tval;
    gettimeofday( &tval, NULL );
    sec = tval.tv_sec;
    usec = tval.tv_usec;
    return( ( ( sec * 1000000 ) + usec ) * 1000 );
}

int sample_cpus( void ) {
    int i;
    debug_thread_t debug_data;
    _uint64 current_nsec, sutime_delta, time_delta;
    memset( &debug_data, 0, sizeof( debug_data ) );

    for( i=0; i<NumCpus; i++ ) {
        /* Get the sutime of the idle thread #i+1 */
        debug_data.tid = i + 1;
        devctl( ProcFd, DCMD_PROC_TIDSTATUS,
        &debug_data, sizeof( debug_data ), NULL );
        /* Get the current time */
        current_nsec = nanoseconds();
        /* Get the deltas between now and the last samples */
        sutime_delta = debug_data.sutime - LastSutime[i];
        time_delta = current_nsec - LastNsec[i];
        /* Figure out the load */
        Loads[i] = 100.0 - ( (float)( sutime_delta * 100 ) / (float)time_delta );
        /* Flat out strange rounding issues. */
        if( Loads[i] < 0 ) {
            Loads[i] = 0;
        }
        /* Keep these for reference in the next cycle */
        LastNsec[i] = current_nsec;
        LastSutime[i] = debug_data.sutime;
    }
    return EOK;
}

int init_cpu( void ) {
    int i;
    debug_thread_t debug_data;
    memset( &debug_data, 0, sizeof( debug_data ) );
/* Open a connection to proc to talk over.*/
    ProcFd = open( "/proc/1/as", O_RDONLY );
    if( ProcFd == -1 ) {
        fprintf( stderr, "pload: Unable to access procnto: %s\n",strerror( errno ) );
        fflush( stderr );
        return -1;
    }
    i = fcntl(ProcFd,F_GETFD);
    if(i != -1){
        i |= FD_CLOEXEC;
        if(fcntl(ProcFd,F_SETFD,i) != -1){
            /* Grab this value */
            NumCpus = _syspage_ptr->num_cpu;
            /* Get a starting point for the comparisons */
            for( i=0; i<NumCpus; i++ ) {
                /*
                * the sutime of idle thread is how much
                * time that thread has been using, we can compare this
                * against how much time has passed to get an idea of the
                * load on the system.
                */
                debug_data.tid = i + 1;
                devctl( ProcFd, DCMD_PROC_TIDSTATUS, &debug_data, sizeof( debug_data ), NULL );
                LastSutime[i] = debug_data.sutime;
                LastNsec[i] = nanoseconds();
            }
            return(EOK);
        }
    }
    close(ProcFd);
    return(-1);
}

void close_cpu(void){
    if(ProcFd != -1){
        close(ProcFd);
        ProcFd = -1;
    }
}

int main(int argc, char* argv[]){
    int i,j;
    init_cpu();
    printf("System has: %d CPUs\n", NumCpus);
    for(i=0; i<20; i++) {
        sample_cpus();
        for(j=0; j<NumCpus;j++)
        printf("CPU #%d: %f\n", j, Loads[j]);
        sleep(1);
    }
    close_cpu();
}

Comment obtenir la mémoire gratuite (!): http://www.qnx.com/support/knowledgebase.html?id=50130000000mlbx

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <err.h>
#include <sys/stat.h>
#include <sys/types.h>

int main( int argc, char *argv[] ){
    struct stat statbuf;
    paddr_t freemem;
    stat( "/proc", &statbuf );
    freemem = (paddr_t)statbuf.st_size;
    printf( "Free memory: %d bytes\n", freemem );
    printf( "Free memory: %d KB\n", freemem / 1024 );
    printf( "Free memory: %d MB\n", freemem / ( 1024 * 1024 ) );
    return 0;
} 

2
2018-05-26 07:42



J'ai utilisé ce code suivant dans mon projet C ++ et cela a bien fonctionné:

static HANDLE self;
static int numProcessors;
SYSTEM_INFO sysInfo;

double percent;

numProcessors = sysInfo.dwNumberOfProcessors;

//Getting system times information
FILETIME SysidleTime;
FILETIME SyskernelTime; 
FILETIME SysuserTime; 
ULARGE_INTEGER SyskernelTimeInt, SysuserTimeInt;
GetSystemTimes(&SysidleTime, &SyskernelTime, &SysuserTime);
memcpy(&SyskernelTimeInt, &SyskernelTime, sizeof(FILETIME));
memcpy(&SysuserTimeInt, &SysuserTime, sizeof(FILETIME));
__int64 denomenator = SysuserTimeInt.QuadPart + SyskernelTimeInt.QuadPart;  

//Getting process times information
FILETIME ProccreationTime, ProcexitTime, ProcKernelTime, ProcUserTime;
ULARGE_INTEGER ProccreationTimeInt, ProcexitTimeInt, ProcKernelTimeInt, ProcUserTimeInt;
GetProcessTimes(self, &ProccreationTime, &ProcexitTime, &ProcKernelTime, &ProcUserTime);
memcpy(&ProcKernelTimeInt, &ProcKernelTime, sizeof(FILETIME));
memcpy(&ProcUserTimeInt, &ProcUserTime, sizeof(FILETIME));
__int64 numerator = ProcUserTimeInt.QuadPart + ProcKernelTimeInt.QuadPart;
//QuadPart represents a 64-bit signed integer (ULARGE_INTEGER)

percent = 100*(numerator/denomenator);

0
2017-10-26 17:22



Pour Linux Vous pouvez également utiliser / proc / self / statm pour obtenir une seule ligne de nombres contenant des informations clés sur la mémoire de processus, ce qui est plus rapide à traiter que de parcourir une longue liste d'informations rapportées par proc / self / status.

Voir http://man7.org/linux/man-pages/man5/proc.5.html

   /proc/[pid]/statm
          Provides information about memory usage, measured in pages.
          The columns are:

              size       (1) total program size
                         (same as VmSize in /proc/[pid]/status)
              resident   (2) resident set size
                         (same as VmRSS in /proc/[pid]/status)
              shared     (3) number of resident shared pages (i.e., backed by a file)
                         (same as RssFile+RssShmem in /proc/[pid]/status)
              text       (4) text (code)
              lib        (5) library (unused since Linux 2.6; always 0)
              data       (6) data + stack
              dt         (7) dirty pages (unused since Linux 2.6; always 0)

0
2018-03-21 11:07



Mac OS X - CPU

Utilisation globale du processeur:

De Récupérer des informations système sur MacOS X? :

#include <mach/mach_init.h>
#include <mach/mach_error.h>
#include <mach/mach_host.h>
#include <mach/vm_map.h>

static unsigned long long _previousTotalTicks = 0;
static unsigned long long _previousIdleTicks = 0;

// Returns 1.0f for "CPU fully pinned", 0.0f for "CPU idle", or somewhere in between
// You'll need to call this at regular intervals, since it measures the load between
// the previous call and the current one.
float GetCPULoad()
{
   host_cpu_load_info_data_t cpuinfo;
   mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT;
   if (host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO, (host_info_t)&cpuinfo, &count) == KERN_SUCCESS)
   {
      unsigned long long totalTicks = 0;
      for(int i=0; i<CPU_STATE_MAX; i++) totalTicks += cpuinfo.cpu_ticks[i];
      return CalculateCPULoad(cpuinfo.cpu_ticks[CPU_STATE_IDLE], totalTicks);
   }
   else return -1.0f;
}

float CalculateCPULoad(unsigned long long idleTicks, unsigned long long totalTicks)
{
  unsigned long long totalTicksSinceLastTime = totalTicks-_previousTotalTicks;
  unsigned long long idleTicksSinceLastTime  = idleTicks-_previousIdleTicks;
  float ret = 1.0f-((totalTicksSinceLastTime > 0) ? ((float)idleTicksSinceLastTime)/totalTicksSinceLastTime : 0);
  _previousTotalTicks = totalTicks;
  _previousIdleTicks  = idleTicks;
  return ret;
}

0
2018-04-24 07:54